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The simultaneous effect of small deformation and short-range van der Waals attrac-
tion on the coalescence efficiency of two different-sized slowly sedimenting drops is
considered. For spherical drops, it has been shown previously that the tangential
mobility of drop surfaces makes collision possible even without van der Waals attrac-
tion; on the other hand, even a small amount of deformation precludes drops from
coming into contact unless van der Waals attraction is accounted for. In the present
work, the conditions are delineated when these two small-scale factors, acting in
opposite directions, have a considerable combined effect on the coalescence efficiency.
The problem is solved by matched asymptotic expansions valid for small capillary
numbers (Ca). The outer solution, for two spherical drops moving in apparent con-
tact without van der Waals attraction, determines the contact force as a function of
time. This force is used as the driving force for the inner solution of the relevant
integro-differential thin-film equations (coupling the flow in the small-gap region to
that inside the drops) to determine whether coalescence occurs during the apparent
contact motion. The initial gap profile for the inner solution is provided by matching
with the outer trajectory for spherical drops approaching contact.

The analysis shows that, for Ca � 1, the near-contact deformation is mainly
axisymmetric, greatly simplifying the inner solution; nevertheless, determination of
the critical horizontal offsets leading to coalescence and the parametric analysis are
computationally very intensive. To facilitate these tasks, a substantially new, highly
efficient, and absolutely stable numerical method for solving stiff thin-film equations is
developed. Unlike for spherical drops, when the upstream intersection area is a circle,
the existence of a second coalescence zone for deformable drops is found over much
of the parameter space. Results are mapped out for a range of four dimensionless
parameters (capillary number, size and drop-to-medium viscosity ratios, dimensionless
Hamaker parameter). As a physical application, predicted coalescence efficiencies are
shown for a system of ethyl salicylate drops in diethylene glycol.

The present solution extends the range of drop sizes where the coalescence efficien-
cies are known theoretically and can be used in drop population dynamics. Com-
parison with full three-dimensional boundary-integral calculations for deformable
drops without van der Waals attraction is also made to demonstrate that, when
the drop-to-medium viscosity ratio is of the order of unity, the present asymptotic
approach is valid in a wide range of small and moderately small capillary numbers.

† Author to whom correspondence should be addressed.



118 M. A. Rother, A. Z. Zinchenko and R. H. Davis

1. Introduction

Coalescence phenomena are significant not only in nature, as in raindrop formation,
but also in industry, as in liquid–liquid extraction and flotation. Knowledge of collision
rates for such processes allows prediction of drop growth and phase separation on the
macroscopic level through the use of population dynamics (Reddy, Melik & Fogler
1981; Rogers & Davis 1990; Wang & Davis 1993, 1995; Zhang, Wang & Davis 1993).

Previous calculations for the collision rate of spherical drops in Stokes flow have
been based on the exact bipolar coordinate solutions for the motion along and
normal to the line of centres (Haber, Hestroni & Solan 1973; Rushton & Davies
1978; Zinchenko 1980) and lubrication asymptotics (Zinchenko 1978, 1982; Davis,
Schonberg & Rallison 1989). Since the hydrodynamic resistance between two spherical
drops contains an integrable singularity, collision is possible even in the absence of
van der Waals forces. Thus, Zinchenko (1982) was able to determine the collision
rate of two settling non-Brownian drops without colloidal forces. Subsequently,
Zhang & Davis (1991) included van der Waals attraction and considered Brownian
drops as well. Having obtained a bipolar coordinate solution for arbitrarily sized
freely suspended drops in a shear flow, Wang, Zinchenko & Davis (1994) performed
calculations for the collision rate, both with and without van der Waals forces. For
extreme drop size ratios, the image solutions of Fuentes, Kim & Jeffrey (1988, 1989)
may turn out to be more suitable, but the problem remains unstudied. The case of
two semi-Brownian drops or solid spheres was analysed recently by Zinchenko &
Davis (1994, 1995) for buoyancy-driven and shear flow.

The above studies neglected the effects of drop deformation on film drainage,
despite a considerable body of research pertaining to thinning rates and rupture
between deformable interfaces (Hahn, Chen & Slattery 1985; Jones & Wilson 1978;
Yiantsios & Higgins 1989; Chesters 1991). The work of Yiantsios & Davis (1990,
1991) is of particular relevance here. They coupled the lubrication flow in the gap
to the internal flow within the drops by a local boundary integral approach and
showed that, for the case of drops moving along their line of centres, an infinite
time is required for coalescence in the absence of van der Waals forces. Thus, if
deformation becomes important before van der Waals attraction is dominant, small
deformation can significantly reduce the collision rate from its value for spherical
drops. Moreover, an important question arises about the range of validity of the
collision rate calculations made for non-deformable drops.

Previous experimental work supports the idea that small deformations inhibit
coalescence. Zhang, Davis & Ruth (1993) found that, when the initial horizontal
offset between two drops under low-Reynolds-number and low-capillary-number
conditions was small enough for spherical drops to coalesce, the drops nevertheless
passed by one another with only rare coalescence. In addition, symmetry in the
relative trajectories was lost – a phenomenon which could be due to deformation.

Manga & Stone (1993, 1995), however, found that deformation promotes coales-
cence for moderate and large capillary numbers. For the buoyancy-driven motion of
air bubbles in corn syrup, they observed that a larger bubble passing by a smaller
one can ‘suck’ the smaller bubble toward it due to deformation. They also presented
experimental evidence that the collision efficiency when deformation is finite might
surpass that predicted by the Smoluchowski model. Presumably, the very small vis-
cosity ratio plays a crucial role in these experiments by acting (i) to increase the
bubble tendency to migrate laterally and align, (ii) to decrease the bubble tendency
to break up prematurely (Rallison 1984; Bentley & Leal 1986), and (iii) to decrease
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the lubrication resistance of the film at the latest stage. Unlike in Manga & Stone’s
experiments, the case of moderate drop-to-medium viscosity ratios is considered in
the present work.

The goal of the present work is to calculate collision rates in a dilute dispersion
of slightly deformable drops in buoyancy-driven flow. In §2, the problem and basic
assumptions are outlined. In §3, the general approach and governing equations are
presented. The numerical technique employed in solving the thin-film equations is
described and compared with previous methods in §4, while full three-dimensional
boundary integral calculations are presented in §5 to justify underlying hypotheses
and as a means of evaluating the accuracy of the asymptotic approach. Section 6
contains results which indicate the existence of two coalescence zones for slightly
deformable drops over much of the parameter space. In addition, parametric analysis
of collision efficiencies is made, and specific collision efficiencies for ethyl salicylate
drops in diethylene glycol are determined.

2. Formulation of the problem
We consider the motion of two drops immersed in an immiscible and unbounded

fluid under the influence of gravity at low Reynolds numbers. The surface tension
is assumed to be sufficiently large that the drop deformation can be considered as a
small (but singular) perturbation. The viscosity of the drop phase is assumed to be of
the same order of magnitude as that of the surrounding medium, and the interfaces
are free of surfactants. In addition, electrostatic repulsion is neglected, which is
appropriate for unstable systems with rapid coalescence. The drops have undeformed
radii a1 and a2, with size ratio k = a1/a2 < 1, and both have density ρ′ and viscosity
µ′. Gravity acts vertically downward, and so the drops sediment downwards if their
density is greater than that of the matrix fluid, ρe. The viscosity of the surrounding
fluid is µe, and µ̂ = µ′/µe is the viscosity ratio.

The collision rate between drops of radii a1 and a2 per unit volume is

J12 = n1n2 |V∞1 − V∞2 | π(a1 + a2)
2E12, (2.1)

where n1 and n2 are the corresponding number densities, E12 is the collision efficiency
(which accounts for non-rectilinear motion due to hydrodynamic and interdroplet
interactions), and the isolated drop velocities are given by

V∞i =
2

9

(ρ′ − ρe)g
µe

(
µ̂+ 1

µ̂+ 2
3

)
a2
i , i = 1, 2. (2.2)

In determining the collision efficiency, it is necessary to find the upstream inter-
section area leading to coalescence relative to π(a1 + a2)

2. At infinite separation,
the horizontal offset between the drop centres is d∞. For simple cases, the collision
efficiency is E12 = [d∗∞/(a1 + a2)]

2, where d∗∞ is the critical horizontal offset separating
colliding and non-colliding trajectories. In previous work (Zhang & Davis 1991),
finite collision efficiencies were obtained without including the effects of deformation
and van der Waals attraction. Yiantsios & Davis (1990, 1991), however, showed
that coalescence cannot take place when small deformation occurs in the absence of
attractive molecular forces. Thus, it is of particular interest to investigate how small
deformation and short-range van der Waals forces, both small-scale effects, make the
collision efficiency differ from that for spheres without attractive forces. Our purpose
is to study the collision efficiency as a function of four dimensionless parameters: k, µ̂,
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Figure 1. Definition sketch for two spherical drops in apparent contact.

δ (a dimensionless Hamaker parameter defined in (3.21)), and the capillary number:

Ca =
µe |V∞1 − V∞2 |

σ
, (2.3)

where σ is the constant interfacial tension.

3. General method of the solution
3.1. Outer region

When the capillary number is sufficiently small, significant deformation of the drops
will be confined to the small-gap region in the vicinity of near contact. On the length
scale of the drop size, the two drops can be considered as fluid spheres, which come
into contact without van der Waals attraction at some initial value β0 of the angle
β between the line of centres and the vertical (see figure 1). Viewed from this outer
solution, the drops appear to move in contact, until they either coalesce or separate.
However, on the deformation length scale, there is a small non-uniform gap between
the drops that evolves under the action of van der Waals and hydrodynamic forces.
When β0 is small enough, van der Waals forces have enough time to pull the drops
together and cause the film rupture. If β0 is increased, we expect a critical value βc to
exist, beyond which the drops will separate and pass by one another. The problem is
reduced to determining the critical angle βc, because the critical offset parameter, d∗∞,
and the coalescence efficiency, E12 = [d∗∞/(a1 +a2)]

2, can be found simply by backward
integration of the governing equations for two spherical drops in the absence of van
der Waals attraction (Zinchenko 1982), starting from β = βc.

From the linearity of the Stokes equations and the formulation of Zinchenko (1982),
the forces acting on two spherical drops in apparent contact can be written as

F 1 = −6πµea1

[
Λ12V + T11(V 1 − V 2)

⊥ + T12V
⊥
2

]
+ F , (3.1a)

F 2 = −6πµea2

[
Λ22V + T21(V 2 − V 1)

⊥ + T22V
⊥
2

]
− F , (3.1b)

where V = V
‖
1 = V

‖
2 is the common velocity of the drops along the line of centres, ⊥

marks components perpendicular to the line of centres, and F and −F are the equal
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Figure 2. Definition sketch for inner region, where small deformation has occurred.

and opposite contact forces acting between the two drops along their line of centres.
Here, V 1 and V 2 are the velocities of the geometrical centers of spherical drops. The
hydrodynamic resistance coefficients Λ12 and Λ22 for an aggregate of two touching
spheres are given by Reed & Morrison (1974), and the Tij values are given by the
results of Zinchenko (1980) in the limit of zero gap.

The overall force balances, F i + 4
3
πa3

i ∆ρg = 0, projected along the line of centres
allow exclusion of V and give the expression for the magnitude of the contact force:

F =
4

3
π
a1a2

(
a2

2Λ12 − a2
1Λ22

)
a2Λ22 + a1Λ12

∆ρg cos β. (3.2)

The overall force balances in the transverse direction normal to the line of centres
give the equation for the relative tangential motion:

dβ

dt
= κT sin β, (3.3)

where

κ =
2

9

∆ρga2
2

(a1 + a2)µe
, T =

T12 − k2T22

T11T22 + T21T12

, (3.4)

which can be integrated to yield

β = 2 arctan
[
tan

(
1
2
β0

)
exp (κTt)

]
, (3.5)

assuming β = β0 at t = 0. Combining (3.2) and (3.5) gives the contact force as an
explicit function of time. A key feture of the solution is that the small deformation in
the region of near contact affects the rate of film drainage and relative motion along
the line of centres, but does not affect the transverse relative motion normal to the
line of centres for Ca� 1. Thus, (3.5) applies in the inner region as well.

3.2. Inner region

Although the drops appear to be in contact when viewed from the outer region,
they are actually separated by a thin film which exhibits lubrication flow. The
‘contact’ force given by equations (3.2) and (3.5) is the driving force for the integro-
differential system of the thin-film equations which couple the lubrication flow in
the gap region to the internal flow within the drops. This force takes the form of a
lubrication force arising from the dynamic pressure within the thin film. In the local
Cartesian coordinate system (x1, x2, x3) with the origin O at the point of contact
of non-deformed spheres, and the x3-axis along their line of centres (figure 2), these
equations take the form
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Normal stress balance

p− A

6πh3
= σ

(
1

a1

+
1

a2

)
− σ

2
∇2
S h, (3.6)

Momentum balance

f = − 1
2
h ∇S p, (3.7)

Local boundary integral

u(x) =
1

4πµ′

∫ ∞
−∞

∫ ∞
−∞

[
f(x′)

r
+

(f(x′) · r)r
r3

]
dx1dx2, (3.8)

Mass continuity

∂h

∂t
+ ∇S · [h(v − v0)] = 0, (3.9)

Integral force balance ∫ ∞
−∞

∫ ∞
−∞

(
p− A

6πh3

)
dx1dx2 = F(t), (3.10)

where h, p, f, and v depend on t, x1 and x2 and are, respectively, the film thickness,
the dynamic pressure, the tangential stress exerted by the lubrication flow on the fluid
inside the drops, and the fluid velocity in the film; −A/6πh3 is the unretarded van der
Waals disjoining pressure (Hamaker 1937) with effective Hamaker constant A; v0 is
the velocity of the point of contact O of the two non-deformed spheres; u = v− vouter
is the velocity perturbation, where vouter is the mutual fluid velocity from the outer
solution at the point of contact O; subscript S denotes differential operations in the
(x1, x2)-plane; r = x′ −x; and F(t) is determined from (3.2) and (3.5). These equations
represent a generalization of the axisymmetric thin-film equations (Yiantsios & Davis
1990, 1991).

The continuity equation (3.9) can be written as

∂h

∂t
+ ∇S · (hu) + (vouter − v0) · ∇S h = 0. (3.11)

If v0 = vouter , the last term in (3.11) drops out, and the system (3.6)–(3.11) obviously has
an axisymmetrical solution, with h, p, f, and u depending only on t and r = (x2

1+x2
2)

1/2,
given the axisymmetrical initial gap profile; otherwise, the film is necessarily non-
axisymmetric (E. J. Hinch, personal communication). We have been unable to prove
analytically that the fluid velocity from the outer solution at the point of contact,
vouter , is the same as the velocity v0 of the geometrical contact point. However, it is
possible to demonstrate this important fact numerically.

A representative example of two slightly non-touching spherical drops with a1/a2 =
0.7 was considered, the first sphere having an instantaneous unit velocity of its centre
in the direction normal to the line of centres, while the centre of the second sphere
is at rest. By calculating the fluid velocities v1 and v2 on the drop surfaces 1 and 2,
respectively, at the axis of symmetry across the gap, a check has been made that both
v1 and v2 approach the same value v0 = 1/(1 + 0.7) = 0.5882, given by the lever rule,
in the limit of touching. This Stokes problem is conveniently solved by multipole
expansions, using Lamb’s general solution and retaining a sufficient number of terms
for each value of the gap (Zinchenko 1982). Results are shown in table 1 for two
viscosity ratios, µ̂ = 1 and µ̂ = 3, and different values of the dimensionless surface
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µ̂ = 1 µ̂ = 3
ε v1 v2 v1 v2

0.1 0.656 0.396 0.7614 0.3475
0.03 0.620 0.526 0.6794 0.4825
0.01 0.607 0.573 0.6316 0.5460
0.003 0.600 0.589 0.6059 0.5758
0.001 0.596 0.593 0.5962 0.5855
0.0003 0.594 0.593 0.5920 0.5887
0.0001 0.592 0.592 0.5904 0.5893
0.00003 0.591 0.591 0.5896 0.5893

Table 1. Dimensionless fluid velocities on drop surfaces 1 and 2 as the gap goes to zero.

clearance ε = hmin/a1. Since v1 = v2 = v0 in the limit ε → 0, we conclude that
vouter = v0.

At the initial stage of approach, the deformation is necessarily axisymmetric, since
it is a perturbation generated by the lubrication pressure between two spherical
drops; the lubrication pressure is axisymmetrical because the normal relative motion
provides the dominant contribution. So, the film will remain axisymmetric to leading
order in the capillary number, so long as it is stable. Loss of stability, however, will
most likely not occur until just prior to coalescence and so would not appreciably
change the results of our calculations. The axial symmetry of the film, which is a
crucial but not ad hoc simplification, allows rewriting of (3.6)–(3.11) in a cylindrical
coordinate system moving with the gap in a form similar to (63)–(67) of Yiantsios &
Davis (1990), the difference being in the inclusion of van der Waals pressure and the
time-dependent driving force, F(t). We introduce the non-dimensional variables t̃, h̃,
p̃, f̃, and ũ similar to Saboni, Gourdon & Chesters (1995):

h =
b2

R
h̃, r = br̃, p =

σ

2R
p̃, f =

bσ

2R2
f̃, u =

1

2

b2

R2

σ

µ′
ũ, t = 2

R2

b

µ′

σ
t̃, (3.12)

where b is defined by the relation πb2σ/R = ∆ρgR3 and is a measure of the dimple
radius, and R = a1a2/(a1 + a2) is the reduced radius of the two drops. This non-
dimensionalization, rather than that of Yiantsios & Davis (1990), is chosen in order
to remove the artificial dependence on an arbitrary initial separation; the length scale
b2/R is then a characteristic value of the deformation length scale in the near-contact
region.

With tildes over the non-dimensional variables henceforth omitted, the dimension-
less equations take the form:

Normal stress balance

p− δ

h3
= 2− 1

r

∂

∂r

(
r
∂h

∂r

)
, (3.13)

Momentum balance

f = −h
2

∂p

∂r
, (3.14)

Local boundary integral

f(r) = 4

∫ ∞
0

φ(r′, r)

[
u

r′2
− 1

r′
∂u

∂r′
− ∂2u

∂r′2

]
dr′, (3.15)
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Mass continuity

∂h

∂t
+

1

r

∂

∂r
(rhu) = 0, (3.16)

Integral force balance ∫ ∞
0

(
p− δ

h3

)
rdr = α cos β(t), (3.17)

where, from (3.5)

β(t) = 2 arctan
[
tan

(
1
2
β0

)
exp(ζ Ca1/2 t)

]
, (3.18)

α =
4

3
π

(k + 1)3

k2

(
Λ12 − k2Λ22

Λ22 + kΛ12

)
, ζ =

2

3

µ̂

(k + 1)

[
2π

(1− k2)

(µ̂+ 2
3
)

(µ̂+ 1)

]1/2

T , (3.19)

and φ(r′, r) is the elliptic type Green’s function:

φ(r′, r) =
1

2π

r′

(r2 + r′2)1/2

∫ π

0

[
1− 2rr′ cos θ

r2 + r′2

]−1/2

cos θ dθ

=
1

2πr

[
−(r + r′)E +

(r2 + r′2)

(r + r′)
K

]
, (3.20)

where E and K are the full elliptic integrals with modulus 2(rr′)1/2/(r + r′). Finally,
the non-dimensional Hamaker constant,

δ =
π2

3

Aσ2

(∆ρg)3

(
a1 + a2

a1a2

)8

, (3.21)

represents the ratio of the molecular forces to lubrication forces when the characteristic
length is the dimple radius. Only small values of δ are considered herein; the case
δ = O(1) is less interesting because the effect of deformation on the coalescence
efficiency turns out to be negligible in this case (see §6). Far from the gap region, the
solution h(t, r) should behave as (Yiantsios & Davis 1990, 1991)

h ∼ 1
2
r2 − α cos β ln r + O(1), (3.22)

where the first term represents, to leading order, the non-deformed shape.
Since the driving force α cos β(t) is a slowly varying function of the non-dimensional

time t, the method of two timings in analysing the system (3.13)–(3.17) might be
appropriate (Cole 1968). However, we have found this idea difficult to implement,
and so, in what follows, the capillary number Ca is simply taken as a small but finite
parameter.

3.3. Trajectory matching (general case)

A proper transition should be made from the outer solution for the relative trajectory
of two spherical drops without van der Waals attraction, approaching contact at
β = β0, to the inner solution of the thin-film equations; this time matching provides
an initial condition h(0, r) to integrate (3.13)–(3.17). According to the scaling (3.12),
the deformation first becomes important at t = O(1), when h = O(1). At these times,
the driving force, α cos β(t), has nearly a constant value of α cos(β0), as follows from
(3.18) and the constraint Ca� 1 (provided that β0 is not close to π/2; the special case
β0 ≈ π/2 is considered in §3.4). Additionally, the van der Waals disjoining pressure,
−δ/h3, is still small for h = O(1), compared to the other terms in (3.13) and (3.17)
due to δ � 1.
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For the above reasons, the following matching procedure can be used. We start
from some large non-dimensional minimum separation h0 � 1 and non-deformed
film shape h = h0 + r2/2 at t = 0, and integrate the system (3.13)–(3.17) with β(t) = β0

and δ = 0 until the moment t = tcoll , when two drops would collide if they stayed
non-deformed without van der Waals attraction. This artificial collision time is given
by

tcoll =
3

8

√
2 π2

α

h
1/2
0

cos β0

, (3.23)

as follows from the near-contact asymptotics for two spherical drops (Davis et al.
1989; Zinchenko 1982; see Appendix A). Note that, while tcoll can be arbitrarily large
with increasing h0, the film profile h(tcoll , r) becomes independent of h0 when h0 →∞
(because then, for most of the time in this integration, the deformation is unimportant).
It is this profile which is the desired initial condition h(0, r) for integration of (3.13)–
(3.17) for the inner solution from t = 0 with a variable β-angle (3.18) and δ given
by (3.21). We have found this initial h(0, r) to be a slightly non-parabolic profile,
practically insensitive to the initial separation h0 for h0 > 10α cos β0. Thus, the
matching condition in the present form does not contain arbitrary parameters and
avoids pinpointing an exact position in time to switch from the spherical-drop outer
solution to the thin-film inner solution for each trajectory.

3.4. A special case: β0 ≈ π/2; (π/2− β0 = O(Ca1/3))

If the initial contact angle β0 is close to π/2, then, as a detailed analysis shows (§6), the
drops either coalesce or separate in the vicinity of β = π/2, and so the linearization
of cos β(t) in (3.17) can be made for all t, using either (3.3) or (3.18). Introducing new

non-dimensional variables t̂, r̂, ĥ, p̂, û, and f̂ as

r̂ =
r

ω1/3 Ca1/6
, ĥ =

h

ω2/3 Ca1/3
, t̂ = ω1/3 Ca1/6t,

p̂ = p, û =
u

ω2/3 Ca1/3
, f̂ =

f

ω1/3 Ca1/6
, (3.24)

where ω = αζ, and α and ζ are defined by (3.19), the thin-film equations (3.13)–(3.17)
with the linearized driving force take the form

p̂− δ̂

ĥ3
= 2− 1

r̂

∂

∂r̂

(
r̂
∂ĥ

∂r̂

)
, (3.25)

f̂ = − ĥ
2

∂p̂

∂r̂
, (3.26)

f̂ = 4

∫ ∞
0

φ(r̂′, r̂)

(
û

r̂′2
− 1

r̂′
∂û

∂r̂′
− ∂2û

∂r̂′2

)
dr̂′, (3.27)

∂ĥ

∂t̂
+

1

r̂

∂

∂r̂
(r̂ ĥ û) = 0, (3.28)

∫ ∞
0

(
p̂− δ̂

ĥ3

)
r̂ dr̂ = ξ̂0 − t̂. (3.29)
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The new parameters, δ̂ and ξ̂0 > 0 are related to the old ones by

δ̂ =
δ

ω2 Ca
, β0 =

π

2
− Ca1/3ω2/3 ξ̂0

α
. (3.30)

An advantage of the driving force linearization and the scaling (3.24) is that the
size ratio, viscosity ratio, capillary number and dimensionless Hamaker constant have

all been incorporated into one dimensionless parameter, δ̂, and results near π/2 can
be easily transformed throughout the entire parameter space.

Matching with the outer trajectory is now handled simply by integrating (3.25)–

(3.29) with the initial non-deformed shape ĥ = ĥ0+ r̂2/2, where ĥ0 � 1, from t̂ = −t̂coll ,
where t̂coll is the time required for two drops to collide under the action of the driving
force (3.2), linearized in time at β ≈ π/2, if they stayed non-deformed without van
der Waals attraction. This form of matching assumes that the outer trajectory would
reach contact at t̂ = 0, as required. The expression for t̂coll again can be obtained
from the near-contact asymptotics for spherical drops (see Appendix A):

t̂coll = −ξ̂0 +
[
ξ̂2

0 + 3
4

√
2 π2ĥ

1/2
0

]1/2

. (3.31)

In the present paper, only small and moderate values of δ̂ are of interest. In this
case, the system (3.25)–(3.29) should be integrated to t̂ = O(1) or longer times, to
determine whether the drops will touch (coalesce) or separate; the solution at these

times is unaffected by the arbitrary initial separation ĥ0, provided ĥ0 � 1.

For π/2−β0 = O(Ca1/3), which corresponds to ξ̂0 = O(1), the axial symmetry of the
film, to leading order in Ca� 1, is still a valid assumption. Indeed, when two spherical
drops approach each other, the lubrication pressure from the normal relative motion
is O(F/(εa2

i )), where F is the driving force (3.2) and εa1 is the minimum surface
separation. The gap contribution from the transverse motion to the hydrodynamic
forces should not exceed O(Fiε), since the resistance coefficients Tij are known to
have finite derivatives with respect to ε at ε→ 0 (Zinchenko 1980). From this and the
cos φ-dependence of the pressure for the transverse motions on the azimuthal angle
of rotation about the line of centres (Zinchenko 1980), we conclude that the normal
stress in the gap region for the transverse motion is at most O(Fi/(a

2
i ε

1/2)) and, hence,
its ratio to the lubrication pressure for the normal motion is at most O(ε1/2/ cos β).
With cos β = O(Ca1/3), the lubrication pressure from the normal relative motion
becomes comparable to the capillary pressure at ε = O(Ca4/3); the transverse motion
contribution at these separations is at least O(Ca−1/3) times smaller. Hence, the
initial deformation is necessarily axisymmetric due to the dominant pressure from the
normal motion, and, as before, there is no reason to expect the loss of axial symmetry
of the film, as long as it remains stable.

3.5. On the range of validity of the present theory

A natural question is whether the assumption of small Reynolds numbers, Rei =
Viaiρe/µe � 1, is enough to neglect inertial effects in the gap region. Except for the
very fast, quick stage of the film drainage, where the van der Waals attraction is
dominant, an estimation of the role of inertia effects in the gap region for µ̂ = O(1) is
made as follows. To leading order, the fluid velocity in the near-contact zone is finite,
O(Vi), and varies on the length scale aiε

1/2 (where ε = O(h/ai)). The normal relative
velocity is at most O(Viε

1/2), which follows from the resistance law dh/dt ∼ Viε
1/2

(Davis et al. 1989) for non-deformed drops as the upper estimate. The parabolic
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squeezing tangential fluid velocity (due to normal relative motion) is O(ε1/2Vi) and
varies on the length scale εai (Yiantsios & Davis 1990, 1991); the time scale for the
velocity changes is at least O(aiε

1/2/Vi). It follows from these arguments that the
neglected unsteady and convective terms (∂v/∂t, v · ∇ v) in the near-contact zone do
not exceed O(V 2

i /(aiε
1/2)). The viscous term µ∇2v is O(µeVi/(a

2
i ε

3/2)) in the gap and
O(µ′Vi/(a

2
i ε)) in the adjacent zones inside the drops. Comparison of the inertia and

viscous terms thus shows that the condition Rei � 1 for the Stokes approximation
in the outer region is also sufficient to neglect inertia terms in the near-contact zone.
For this reason, small inertial effects cannot act as a singular perturbation in the gap
region (for solid spheres, this was shown by Cooley & O’Neill 1969 and by O’Neill &
Stewartson 1967) and would give for Rei � 1 only a small correction to the results of
the present paper. In contrast, small deformation is a singular perturbation and can
make the coalescence efficiency significantly different from that for spherical drops.

Besides Rei � 1, another limitation of the present theory is the neglect of the
next terms in the asymptotic thin-film equations (3.13)–(3.17). As follows from the
analysis of Zinchenko (1978, 1982) for spherical drops with µ̂ 6 O(1), this neglect
gives an O(| ln ε|ε1/2/µ̂) relative error in the resistance coefficient. Since deformation
becomes important at ε ∼ Ca, we expect the asymptotic equations (3.13)–(3.17) to
be valid for | lnCa|Ca1/2/µ̂ � 1. For µ̂ = O(1), the range Ca1/2| lnCa| � 1 includes
non-Brownian drops, considered in the present work. For example, two ≈ 50 µm
drops with a1/a2 ≈ 0.7 and density contrast ∆ρ ≈ 0.1 g cm−3 have Ca ≈ 10−5, but
still extremely high Péclet number, Pe ≈ 106; it was shown previously (Zinchenko
& Davis 1994) that, even for much smaller Pe ∼ 104, Brownian motion then has no
appreciable effect on the collision efficiency.

Finally, for high viscosity ratio, µ̂� 1 (almost immobile interfaces), the validity of
the thin-film equations used in the present work is limited to µ̂Ca1/2 � 1 (Yiantsios &
Davis 1990, 1991). Besides, for µ̂→∞, the approximation of the film axial symmetry
(which was shown to hold for µ̂ = O(1) and Ca� 1) may have a very narrow range
of validity, but, unfortunately, we are unable to give appropriate estimates.

4. Numerical technique
To find the critical angle βc, defined in §3, and study how the collision efficiency

E12 depends on the parameters k, µ̂, Ca, and δ, the integro-differential system of
equations (3.13)–(3.17) should be solved many thousand times, and it is essential to
develop a very fast algorithm. Given the initial shape h(0, r), a straightforward explicit
approach would start from the normal stress balance (3.13) to calculate pressure p,
then substitute p into the momentum balance (3.14) to find f, then use the inverted
form of the boundary integral (3.15) to calculate the velocity u, and finally update
the film shape from (3.16). Regardless of the technique to satisfy the integral balance
(3.17), we have found that the explicit method or its modifications require an extremely
small time step ∆t 6 const×(∆r)4 for numerical stability, because the system (3.13)–
(3.17) is very stiff. For example, for a typical value α cos β ∼ 5 of the non-dimensional
driving force in (3.17), a very tight stability constraint ∆t 6 1.6× 10−5 was observed,
even with a crude spatial resolution (∆r)min = 0.1. Since the characteristic times
t ∼ Ca−1/2 of tangential motion are of interest, we have found the explicit method
to offer no prospect for obtaining accurate results and systematic applications to
collision efficiency calculations (§6), especially in cases of very small Ca.

An alternative method, used by Yiantsios & Davis (1990, 1991) for the case of
a constant driving force, is a nonlinear completely implicit finite-difference scheme



128 M. A. Rother, A. Z. Zinchenko and R. H. Davis

solved iteratively at each time step, so that, u, f, p, and h are found successively
from (3.16), (3.15), (3.14), and (3.13) by integrations to form a new iterate. (Internal
iterations are also necessary to satisfy the integral force balance (3.17) by adjusting
∂h/∂t.) To guarantee convergence for relatively strong local deformations, a proper
under-relaxation is necessary. Even with under-relaxation, the outer iterations tend to
diverge when the time step ∆t tends to zero, because of the inverse non-evolutional
order of operations (3.16)–(3.13) in this method. Nevertheless, this approach is quite
successful for drops with hydrodynamic interactions only. Difficulties occur when
molecular forces are included; in this case, unfortunately, the relaxation parameter
becomes prohibitively small, and the calculation stops long before coalescence occurs.

To overcome these difficulties, the following substantially new matrix-iterative
method for solving the thin-film equations (3.13)–(3.17) was developed. First, a
semi-implicit scheme is used to make (3.13)–(3.17) linear with respect to h, u, f, and
p at a new time t(ν+1), given the gap profile h(ν) at the previous time t(ν):

r

{
p(ν+1) − δ

[h(ν)]3

}
= − ∂

∂r

(
r
∂H (ν+1)

∂r

)
, (4.1)

2f(ν+1)

h(ν)
= −∂p

(ν+1)

∂r
, (4.2)

f(ν+1)(r) = 4

∫ ∞
0

φ(r′, r)

[
1

r′2
− 1

r′
∂

∂r′
− ∂2

∂r′2

]
u(ν+1)(r′)dr′, (4.3)

rq +
∂

∂r

[
r h(ν) u(ν+1)

]
= 0, (4.4)∫ ∞

0

[
p(ν+1) − δ

[h(ν)]3

]
rdr = α cos β(t), (4.5)

where

H = h− 1
2
r2, q =

h(ν+1) − h(ν)

∆t
=
H (ν+1) −H (ν)

∆t
, (4.6)

and a second-order finite-difference discretization with respect to r is used on a
uniform mesh:

0 = r0 < r1 < r2 < . . . rN = rmax. (4.7)

The matrix method, in its most economical form, to solve (4.1)–(4.5) for h(ν+1), u(ν+1),
f(ν+1) and p(ν+1), starts from (4.4) and gives the expression for u(ν+1)(ri) in terms of
q(rj) (0 6 j 6 i) by integrating from 0 to ri using the trapezoidal rule. Substituting
this expression into the finite-difference form of the boundary integral (4.3) leads to
a matrix relation

f(ν+1) = A1 · q, (4.8)

with the bold letters denoting vectors of values at all mesh points 0, 1, . . . , N and A1

being a (N + 1)× (N + 1) matrix. Equation (4.2) can be integrated next from rmax to
ri. Using the asymptotics of the exact solution at r → ∞, where the deformation can
be neglected,

f(r) = O(r−2), p(r) = O(r−3) (4.9)

(these relations are a simple consequence of (3.14)–(3.16) and (3.22)), the initial
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condition for integrating (4.2) can be taken as

p
(ν+1)
N =

4

3

f
(ν+1)
N

rN
. (4.10)

Thus, substituting (4.8) into (4.2) gives another matrix relation:

p(ν+1) = A2 · q, (4.11)

where A2 is a (N + 1)× (N + 1) matrix. Finally, substituting the pressure (4.11) into
the normal stress balance (4.1) and integrating twice from 0 to ri yields

H (ν+1) = g− T · q + C . (4.12)

The vector g is a result of two-fold integration of (4.1), with the artificial condition
H

(ν+1)
0 = 0 at the axis of symmetry and p(ν+1) neglected. The contribution −T · q

is solely due to p(ν+1) in (4.1) (assuming, again, H (ν+1)
0 = 0); T is another full

(N + 1)× (N + 1) matrix; the vector C = (C,C, . . . C), where the additive constant C
(the film thickness at the axis of symmetry) has yet to be determined.

Taking into account (4.6) and (4.12) gives an equation for q:

(T + ∆t I ) · q = g−H (ν) + C . (4.13)

The vector q can be decomposed as

q = qI + CqII , (4.14)

where qI and qII are the solutions of (4.13) with the right-hand-side vectors being
g − H (ν) and (1, . . . , 1), respectively. LU-factorization of the matrix T + ∆t I into a
product of lower and upper triangular matrices is used to compute qI and qII . The
relations (4.11) and (4.14) imply p(ν+1) = pI + CpII , where the pressures pI = A2 · qI
and pII = A2 · qII are independent of C . Finally, substituting p(ν+1) = pI + CpII into
the integral force balance (4.5) gives the equation for the scalar C; the tail of the
integral (4.5) (over r > rmax) is approximated as p(ν+1)

N r2
N , using the asymptotics (4.9);

the van der Waals pressure contribution to the tail is neglected. Knowing q yields
h(ν+1) and allows us to proceed to the next time step.

Most importantly, this non-iterative algorithm is absolutely stable, as was observed
in all numerical experiments, so that the time step is only limited by accuracy
requirements. However, the cost of LU-factorization of the matrix (T + ∆t I ) is O(N3)
(the other parts of the algorithm, in the optimal form, are O(N2)–intensive and much
faster). To considerably speed up the method, these LU-factorizations are made only
at rare selected instants of time (see below). At intermediate steps, (4.13) for qI and
qII is solved iteratively, using the last-obtained factorization L · U to precondition
(Hageman & Young 1981) the system (4.13). Namely, the factorization L̃ · Ũ of the
matrix (T + ∆t I ) at some close preceding time, t = t(k), can be considered as an
approximate factorization of T + ∆t I at t = t(ν), and so multiplying (4.13) by (L̃ · Ũ)−1

makes the system matrix close to the identity matrix, which allows very fast simple
iterations (` being the number of the iteration):

q(`+1) = q(`) − Ũ
−1 · L̃−1 · R(`) (4.15)

where

R(`) = (T + ∆t I )·q(`) − (g−H (ν))− C . (4.16)

The iterative process (4.15) is performed twice: the first time with C = 0, and the
second time setting g − H (ν) = 0 and C = 1, to generate qI and qII separately (an
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alternative way of iterating the combination qI + CqII was unsuccessful); in both
cases, a linear extrapolation of qI or qII from two preceding steps serves as a good
initial approximation. Obviously, the calculation of the residual R(`) does not require
any matrix operations, but only substituting qI or qII into (4.4), with successive
integrations (4.4)–(4.1) (which makes this part of the algorithm closer to the code of
Yiantsios & Davis 1990, 1991, although the iterative scheme (4.15) is quite different).
When iterating qI , the residual R(`) can be found as H (ν) − H (ν+1) + qI(`)∆t, where

H (ν+1) is the result of the integration of (4.1) with H (ν+1)
0 = 0. When iterating qII , the

residual R(`) takes the form qII∆t−H (ν+1), where H (ν+1) is the result of the integration

of (4.1) with δ = 0 and the axial thickness H (ν+1)
0 = 1.

The cost of each iteration (4.15) is O(N2) and comes mostly from the boundary-
integral evaluation (4.3) and matrix multiplications in (4.15). The frequency of
factorizations (typically, every 15–25 time steps, when N = 100−200) is chosen so that
the factorization costs would be small (20%) compared to the total cost of iterative
solutions between factorizations. For intermediate steps, between factorizations,
typically 3–4 iterations suffice in (4.15). Thus, this economical absolutely stable
algorithm is, on average, O(N2)-intensive per time step. The idea of this algorithm
was prompted by the success of a similar procedure with preconditioning in a recent
algorithm for random close packing (Zinchenko 1994).

To keep the O(N−2) accuracy of spatial discretization, the boundary integral (3.15)
is written as∫ rmax

0

ψ(r′, r)

[
K − ln

r + r′

|r − r′| −
(r + r′)2

r2 + r′2
E

]
dr′ +

∫ rmax

0

ψ(r′, r) ln
r + r′

|r − r′| dr′, (4.17)

with

ψ(r′, r) =
1

2π

(r2 + r′2)

r(r + r′)

[
1

r′2
− 1

r′
∂

∂r′
− ∂2

∂r′2

]
u(r′). (4.18)

The first regular integral (4.17) is approximated by the trapezoidal rule; for the
second one, the weight ψ is linearly interpolated in each interval (r′j , r

′
j+1), and

the corresponding integrals over (r′j , r
′
j+1) are taken analytically (the more standard

procedure of subtracting the logarithmic singularity gives a larger, O(N−2 lnN) error).
Another feature of our algorithm for integrating (3.13)–(3.17) is an adaptive time

step, ∆t = c∆t h
1/2
min/α, where hmin is the minimum film thickness and the coefficient

c∆t � 1 is independent of α. Similarly, to keep high spatial resolution only in the

significant region, a variable value rmax = cR h
1/2
min of the cut-off radius is set before

each new factorization, with cR = const� 1. For drops approaching each other, this
leads to mesh contraction, and the new values of H are obtained by interpolation. For
separating surfaces, when hmin increases, the asymptotic form (3.22), with the constant
O(1) estimated at the old value of rmax, is additionally used to expand the mesh. Both
strategies for adapting ∆t and rmax are applied only when there is no dimple. At the
stage of the film drainage with a dimple present, both ∆t and rmax are kept constant;
in the latter case, the cut-off radius rmax turns out to be much larger than the dimple
radius for the values of cR = 10–20 used.

Finally, an important feature of the algorithm is to double the number of spatial
nodes at the stage of the film drainage when van der Waals attraction is important
(i.e. when the van der Waals pressure −δ/h3 contributes at least 20% to the total
integral force balance (3.17)).

With β(t) ≡ 0, equations (3.13)–(3.17) describe the film drainage under the action
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Figure 3. The long-time asymptotic behaviour of the film thickness h(0, t) at the axis of symmetry
and minimum thickness hmin(t), for constant driving force (β ≡ 0, α = 1) and no van der Waals
attraction.

of a constant driving force. In this case, it is possible to make comparisons with
existing solutions to check our code. The long-time asymptotic forms (69) and (70)
of Yiantsios & Davis (1990) for the film drainage without van der Waals attraction,
re-written in our new non-dimensional variables, take the form

h(0, t) ∼ 0.14α5/6t−1/3, t→∞, (4.19)

hmin(t) ∼ 0.14α2/3t−2/3, t→∞. (4.20)

To verify (4.19)–(4.20), the system (3.13)–(3.17) with δ = 0, β(t) ≡ 0, α = 1 (the
relations (3.18)–(3.19) become irrelevant in this case) was solved numerically by our
new algorithm, starting from the non-deformed shape h(r, 0) = h

(0)
0 + r2/2 with the

initial minimum thickness h(0)
0 = 30. Using N = 100–200, cR = 10–20 and different

time steps, the numerical convergence was achieved to within 1%, both for the
axial h(0, t) and the minimum hmin(t) thicknesses in the wide time range t 6 1200.
The results shown in figure 3 indeed demonstrate that the quantities h(0, t) t1/3 and
hmin(t) t

2/3 approach constant values at t→ ∞ of about 0.11 and 0.15, respectively, in
reasonably good agreement with (4.19)–(4.20) obtained by Yiantsios & Davis (1990)
as a visual best fit in a more limited time range.

Saboni et al. (1995) have recently presented several calculations of the film drainage
under the action of a constant force, with and without van der Waals attraction. In
the case β(t) ≡ 0, and α = 1, equations (3.13)–(3.17) are equivalent to those of Saboni
et al. (1995), if our non-dimensional variables t, r, h, and δ are related to their t∗, r∗,
h∗, and A∗ as follows:

t∗ = t/2, r∗ = r, h∗ = 2h, A∗ = 12δ. (4.21)

Unfortunately, for the same initial condition h∗ = 4 + (r∗)2 and the same values of
A∗, several noticeable discrepancies were detected between our calculations and those
of Saboni et al. (1995). For A∗ = 0, their figure 2 gives the long-time asymptotic
value of the dimple radius (where h = hmin) as r∗D ≈ 1.25, which is in disagreement
with the simple Derjaguin and Kussakov formula r∗D = 1 (see, e.g. Yiantsios & Davis
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Figure 4. Non-dimensional film profile h∗(r∗) at different times, for constant driving force with van
der Waals attraction (A∗ = 10−4). The calculations using different program parameters N = 100–200,
cR = 10–20, and c∆t = 0.003–0.007 give graphically indistinguishable results and locate the dimple
radius to about 1% accuracy.

1990). For comparison, our numerical solutions yield r∗D = 0.99–1.00 for all t∗ > 35.
When A∗ = 10−4, our accurate calculations give r∗D ≈ 0.70 and r∗D ≈ 0.99 for t∗ = 10
and 20, respectively (figure 4), instead of r∗D ≈ 1.15 and r∗D ≈ 1.22, respectively, from
figure 8 of Saboni et al. (1995) at the same times, respectively. In this case, the
further film drainage results in a quick coalescence at t∗ = t∗c ≈ 21.1, as shown in
figure 5, where different time steps, different values of the cut-off radius, and different
N 6 400 (i.e. up to 800 spatial nodes at the last stage of approach) were used to
demonstrate excellent numerical convergence. In contrast, according to figure 8 of
Saboni et al. (1995), t∗ = 25 is still prior to coalescence (paradoxically, their figures
9 and 10 suggest a different value of t∗c , between 20 and 25). For relatively strong
van der Waals attraction, A∗ = 10−2 and 10−3, when the coalescence time is weakly
sensitive to the details of the solution, the values of t∗c from our figure 5 are in very
good agreement with those from figure 9 of Saboni et al. (1995). However, for weak
van der Waals attraction, A∗ = 10−5, our convergent value of t∗c ≈ 37.8 (figure 5) is,
again, noticeably different from their t∗c ≈ 44.

We believe there may be two main reasons for these discrepancies. First, unlike
in our (4.4), Saboni et al. (1995) use the continuity equation (3.16) as a linear
implicit equation for h(ν+1), but otherwise their method remains explicit, because
the thickness h(ν+1) found from (3.16) is then used to calculate pressure from (3.13),
followed by the calculation of f from (3.14) and u from (3.15). Our experience shows
that this modification of the explicit method does not alleviate the problem of the
numerical stiffness, and, for fine spatial resolutions, the time steps would still have
to be extremely small (unfortunately, the number of nodes and the spatial and time
steps used are unavailable from Saboni et al. (1995) to check this conclusion). Second,
the leading asymptotic u = O(r−1) at r → ∞ does not contribute to the integrand of
(3.15), and so the term in the brackets of (3.15) is expected to behave like O(r′−4) at
r′ → ∞, while f(r) decays only like O(r−2) at r →∞. For this reason, the inverted form
of the boundary integral (3.15) used by Saboni et al. (1995) is a much more slowly
convergent integral at infinity than the direct form (3.15). This may also be a source
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Figure 5. Time evolution of the minimum film thickness h∗min(t
∗) for a constant driving force and

different values of the non-dimensional Hamaker constant A∗. For each A∗, the four calculations
using (i) N = 200, c∆t = 0.02, cR = 10, (ii) N = 200, c∆t = 0.01, cR = 10, (iii) N = 400, c∆t = 0.02,
cR = 10, and (iv) N = 400, c∆t = 0.02, cR = 20 give graphically indistinguishable results and at least
0.5% accuracy in the coalescence times.

of inaccuracies. The difficulties of the explicit method for solving thin-film equations
have been recognized (Davis et al. 1986; Yiantsios & Davis 1990, 1991), and it
remains unclear, in view of the observed discrepancies, whether the modification of
the explicit method by Saboni et al. (1995) can be a successful alternative to the more
complicated technique of the present paper.

5. Comparison with full boundary-integral calculations
As for any asymptotic approach, the range of validity of our method described in §3

can be determined only by exact calculations which do not assume small deformations.
To this end, it has proved particularly valuable to make a comparison with a full three-
dimensional boundary-integral solution for two drops settling under gravity without
van der Waals attraction for a small but finite capillary number when numerical
convergence can still be reached. We have recently developed a novel version of
a three-dimensional boundary-integral code, which has, in particular, relatively soft
stability constraints and allows therefore very high surface resolutions (Zinchenko,
Rother & Davis 1997). Using this algorithm, the gravity-induced motion of two drops
with µ̂ = 1, a1/a2 = 0.7, and Ca = 0.145 was calculated (figure 6); initially, the drops
were non-deformed spheres with the horizontal and vertical centre-to-centre offsets
0.325a2 and 5.09a2, respectively (not shown). In this case, spherical drops would
collide at β = β0 = 29.3◦; in contrast, deformable drops come into ‘apparent contact,’
but do not touch (see below), and eventually separate (figure 6).

Figure 7 demonstrates that the main assumption of the asymptotic approach of §3,
namely that the tangential relative motion in apparent contact is unaffected by small
deformations to leading order in Ca� 1, is very accurate for Ca as large as 0.145. For
non-deformed drops, ln tan (β/2) would be a linear function of κTt with unit slope, as
follows from (3.5). For comparison, ln tan (β/2) vs. κTt from the boundary-integral
solution is presented in figure 7, using the value of T = 0.2913 for two touching
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Figure 6. Gravity-induced relative motion of two drops with a1/a2 = 0.7, µ̂ = 1, and Ca = 0.145
by a full boundary-integral algorithm (Zinchenko et al. 1997) using N∆ = 3840 triangular elements
per drop. Drop relative positions (1)–(9) are shown at increasing times with a fixed increment.
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Figure 7. Tangential motion of drops in apparent contact for the simulation shown in figure 6; β
is the angle between the line connecting the surface centroids and the vertical; t is the dimensional
time; k and T are defined in (3.4). The solid line is from the boundary-integral simulation, and
the dashed line (slope 0.984) is the best linear fit in the range of dimensional surface separations
hmin < 0.03a2.
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Figure 8. Comparison between the full boundary-integral simulation shown in figure 6 and the
asymptotic theory. For the motion in apparent contact, the surface-to-surface minimum separation
hmin, scaled with the larger radius a2, is shown vs. β-angle. The boundary-integral calculations are
for both 3840 and 15 360 triangular elements per drop, showing good convergence.

spherical drops with k = 0.7 and µ̂ = 1; this dependence is almost linear, and the
slope 0.984 of the best linear fit in the range of small separations hmin/a2 < 0.03 is,
indeed, very close to unity.

We could not quantify the second main simplification of the asymptotic theory of §3,
namely to check how close the film shape is to axisymmetric; one of the difficulties is
that Ca = 0.145 is not small enough, and some small but noticeable global deformation
(figure 6) does not allow us to choose the reference axis properly. Instead, we have
simply compared the minimum separation hmin vs. β for the boundary integral and
asymptotic calculations. In the boundary-integral solution, hmin is rigorously calculated
as the clearance between two surfaces with flat triangulation (see Zinchenko et al. 1996
for details). To check the convergence, the boundary-integral simulation was repeated
with 15 360 triangles per drop (which took, however, several weeks of background
calculations on an IBM AIX RISC/6000 workstation). The agreement between the
results for N∆ = 3840 and 15 360 is very good (figure 8), considering how delicate the
surface clearance is, about 0.007a2, for the motion in ‘apparent contact.’

The much easier asymptotic calculation (dashed line in figure 8) was implemented
using the matching procedure of §3.3 and the numerical technique of §4. The asymp-
totic solution is surprisingly accurate both in describing hmin(β) and the ‘separation
angle’ β ≈ 120◦; much better agreement could not have been expected, because the
relative size of the inner region, O(Ca1/2), is not very small for this case (in contrast,
the effect of deformations on the tangential motion is likely to be O(Ca)). The success
of the comparison in figure 8 suggests that our asymptotic approach is quite accurate
for smaller Ca 6 0.01 (µ̂ = 1 was chosen only to simplify the boundary-integral
calculations, and the same conclusion is expected for any µ̂ = O(1)). On the other
hand, it would be very problematic to perform convergent full three-dimensional
boundary-integral calculations for Ca 6 0.01, even on the fastest supercomputers,
because of (i) very tight stability constraints in this case, (ii) localization of stress
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Figure 9. Time evolution of the minimum gap thickness for two trajectories near the critical
β0-angle for k = 0.5, µ̂ = 1, Ca = 2.2× 10−3, and δ = 1.1× 10−3.

in a very small near-gap region, and (iii) extremely small surface separations which
two slightly deformable drops can reach. Thus, the asymptotic approach and the
boundary-integral method substantially complement one another.

6. Results
Application of the above theory and numerical methods allows systematic study

of the collision efficiency of sedimenting drops as a function of size ratio, k, viscosity
ratio, µ̂, dimensionless Hamaker constant, δ, and capillary number, Ca. As an example
of our trial-and-error procedure, figure 9 displays the evolution of the thin gap for
β0-angles near the critical value required to determine the collision efficiency. For
N = 100 (and, accordingly, 200 spatial nodes at the stage of significant van der Waals
attraction), the critical β0-value, βc, lies between 1.002 and 1.003 radians when k = 0.5,
µ̂ = 1, δ = 1.1 × 10−3 and Ca = 2.2 × 10−3. As a convergence check, using N = 200
resulted in a change in βc of 1.3% relative error (0.989 < βc < 0.990). Much smaller
time steps and much larger cut-off radii have similar small effects on the bounds for
βc, about 1%, acting in opposite directions. For N = 100, c∆t = 0.02 and cR = 10,
which are typical for the calculations below, the two trajectories for β = 1.002 and
1.003 in figure 9 take 3.5 and 6 minutes, respectively, on an IBM AIX RISC/6000
workstation. A value of c∆t = 0.01 was also often used in the calculations.

For trajectories with greater-than-critical horizontal offset, the minimum separation
between the drops is a complex function of time. As figure 9 shows, for β0 = 0.990
there are a local maximum and a local minimum in hmin after closest approach before
the drops finally separate. The corresponding gap profiles at various instants in time
are given in figure 10 for the same parameter values as in figure 9 with N = 200
and β0 = 0.990. Comparison of the two figures reveals that, by the initial time in
figure 10 (t = 8.66), a dimple has already formed for β0 = 0.990. The radius of the
dimple decreases with decreasing minimum separation until t ∼ 23.91 with β ∼ 1.50
radians, where hmin takes its smallest value. The dimple radius continues to decrease
as β passes through π/2, but now the minimum separation increases until β ∼ 1.61
radians at t ∼ 29.01. Subsequently, hmin decreases until the dimple disappears at
t ∼ 32.64 and β ∼ 1.70. Thereafter, separation of the two drops is very rapid.

Spherical drops both with and without van der Waals attraction have a single
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coalescence zone, such that a horizontal offset exceeding a critical value always leads
to separation of the two drops, while smaller horizontal offsets always result in
coalescence. The case of slightly deformable drops in the presence of molecular forces
displays a more complex behaviour. The complicated interplay of deformation and
van der Waals forces produces a second coalescence zone for certain dimensionless
parameter values where βc is close to π/2. Figure 11 is a graph of the critical β0-angle
vs. the dimensionless Hamaker parameter at capillary numbers of 0.0001, 0.001 and
0.01. It should be noted that these results, indicating a second coalescence zone for
slightly deformable drops, have been confirmed both by calculations from (3.13)–
(3.17) and by using (3.25)–(3.29) from the linear expansion of cosβ near π/2. From
figure 11, for example, two coalescence regions exist for k = 0.5, µ̂ = 1, Ca = 0.001,
and δ = 0.00055. When the initial β-angle is between 0 and 1.019 radians, two
sedimenting drops will always coalesce. For β0 between 1.019 and 1.392 radians, the
drops will pass by one another. However, when β0 is between 1.392 and 1.495 radians,
the drops once again collide, while initial angles greater than 1.495 radians lead to
drop separation.

Figures 12 and 13 help to explain the second coalescence zone. Figure 12(a)
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Figure 12. (a) Evolution of the thin gap and (b) dynamics of the gap profile, indicating rim rupture,
near the onset of the second coalescence region (βc ∼ 1.392), for k = 0.5, µ̂ = 1, Ca = 0.001, and
δ = 0.00055.
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Figure 13. (a) Evolution of the thin gap and (b) dynamics of the gap profile, indicating nose
rupture, near the upper limit of the second coalescence region (βc ∼ 1.495), for k = 0.5, µ̂ = 1,
Ca = 0.001, and δ = 0.00055.

shows two near-limiting trajectories near β0 = 1.392 radians displayed as hmin vs. t,
while figure 12(b) gives two dimensionless gap profiles just before coalescence with
β0 = 1.3927 radians. The mode of coalescence indicated here is rim rupture, wherein
the drops make contact at the edge of the dimple radius. Figure 13 is analogous
to figure 12, except that the region considered is near β0 = 1.495 radians. There
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is no indication of a local maximum or minimum in hmin vs. t as in figure 12(a),
because no dimple forms. Moreover, figure 13(b) indicates nose rupture as the mode
of coalescence. In this case, the drops touch along the axis of symmetry as van der
Waals forces pull them together.

The existence of a second coalescence zone is connected to the transition between
rim rupture and nose rupture of the drops. When the gravitational driving force
along the line of centres is sufficiently weak (β0 is close to π/2), there is a range of
dimensionless Hamaker parameters for which both modes of rupture can occur. In
the first coalescence zone, where β0 is not close to π/2, the drops touch before β
reaches π/2. Van der Waals forces are weak enough to allow the pressure to build up
in the region of near contact and cause a dimple to form before inducing collision.
Thus, the mode of rupture is always rim rupture. Moreover, in this region, the dimple
radius has just begun to decrease at the time of coalescence. In the second coalescence
zone, where β0 is close to π/2, the lower βc value is due to another occurrence of rim
rupture, and the upper βc value is due to nose rupture. In both cases, coalescence
occurs after β has passed through π/2, and thus the net driving force is negative (see
(3.17)). In this region, the nose rupture may occur after a dimple has formed and
disappeared.

Once the critical β0-angles are known, the collision efficiency can be calculated.
From Zhang & Davis (1991), for spherical drops without molecular forces, the
trajectory equation can be integrated to yield

y0

s sin β
= exp

(
−
∫ ∞
s

M − L
sL

ds

)
, (6.1)

where y0 = 2d∞/(a1+a2) is the dimensionless horizontal offset, s is the centre-to-centre
distance between drops, also made dimensionless by the average drop radius, and L
and M are relative mobility functions for spherical drops along and normal to the
line of centres, respectively (Haber et al. 1973; Zinchenko 1980). For spherical drops
without van der Waals attraction, the limiting trajectory has β = π/2 at s = 2, so that
from (6.1) the collision efficiency for spherical drops without van der Waal attraction,
E0, becomes

E0 = 1
4
y2
c =

[
d∗∞

a1 + a2

]2

= exp

(
−2

∫ ∞
2

M − L
sL

ds

)
, (6.2)

where yc is the dimensionless critical offset parameter. The calculation of collision
efficiencies of spherical drops in the presence of van der Waals attraction is described
in Appendix B.

On the limiting trajectory, slightly deformable drops come into apparent contact
(s ≈ 2) at β = βc. Thus, also from (6.1) for the case of one critical β0-angle, the
collision efficiency for slightly deformable drops in the presence of van der Waals
attraction, E12, is given by

E12 = sin2 βc exp

(
−2

∫ ∞
2

M − L
sL

ds

)
. (6.3)

By comparing (6.3) and (6.2) it is seen that

E12

E0

= sin2 βc. (6.4)

When there are two coalescence zones, with three critical β0-angles, such that βc,1 <
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Figure 14. The collision efficiency for gravitational sedimentation of drops as a function of
the dimensionless Hamaker parameter with (a) k = 0.5, µ̂ = 1 at Ca = 0.0001, 0.001 and 0.01;
(b) Ca = 0.001, µ̂ = 1 at k = 0.2, 0.5, and 0.7, and (c) k = 0.5, Ca = 0.001 at µ̂ = 0.5, 1, and 3. The
dashed lines are for spherical drops in the presence of van der Waals forces; the solid lines are for
slightly deformable drops in the presence of van der Waals forces; and the dash-dotted lines mark
a discontinuity in the first derivative, neglecting the presence of the second coalescence region.

βc,2 < βc,3, the collision efficiency is given by generalization of (6.4) as

E12 = E0 (sin2 βc,3 − sin2 βc,2 + sin2 βc,1). (6.5)

It is noted that, owing to the form of (6.5), there are two discontinuities in the first
derivative of the collision efficiency as a function of any one of the four governing
dimensionless parameters with the other three fixed.

Figures 14 and 15 provide general trends for the collision efficiency as a function of
various combinations of the four dimensionless parameters, k, µ̂, δ and Ca. In figure
14, the dimensionless Hamaker constant is the independent variable, and each of the
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Figure 15. The collision efficiency for gravitational sedimentation of drops as a function of the
capillary number with (a) k = 0.7, µ̂ = 1 at δ = 4× 10−6, 4× 10−5, and 4× 10−4, (b) δ = 4× 10−4,
µ̂ = 1 at k = 0.2, 0.5, and 0.7, and (c) k = 0.5, δ = 4×10−4 at µ̂ = 0.5, 1, and 3. The dashed lines are
for spherical drops in the presence of van der Waals forces; the solid lines are for slightly deformable
drops in the presence of van der Waals forces; and the dash-dotted lines mark a discontinuity in
the first derivative, neglecting the presence of the second coalescence region.

three graphs contains curves for the collision efficiency of slightly deformable drops
at three values of one of the remaining three parameters, with the other two fixed.
The dashed curves are for collision efficiencies of spherical drops with van der Waals
forces. In each graph of figure 14, the collision efficiency for slightly deformable
drops is less than that for spherical drops at lower values of δ, and then suddenly
approaches the spherical drop collision efficiency at a certain δ. Figure 15 is similar
to figure 14, except that the capillary number is the independent variable. In this
case, at lower values of Ca, the collision efficiencies are approximately the same for
slightly deformable and spherical drops, and then the two results suddenly diverge
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as Ca increases, with the slightly deformable drop value asymptotically approaching
zero.

In figures 14(a) and 15(a), there are three separate dashed lines for spherical drops
with van der Waals attraction, which fall close together. The highest dashed line
in figure 14(a) corresponds to Ca = 0.01 and the lowest to Ca = 0.0001. Similarly,
in figure 15(a), the highest dashed line corresponds to δ = 0.0004 and the lowest
to δ = 4 × 10−6. The large magnitude of the interparticle force parameter Q12 (see
Appendix B) results in the collision efficiencies for spherical drops with molecular
forces being nearly constant in the parameter range of figures 14 and 15.

Three important trends are illustrated by figures 14 and 15: first, as the viscosity
ratio increases, the hydrodynamic resistance between the two drops increases, and
the collision efficiency consequently decreases; second, as the size ratio increases
toward unity, the relative velocity of the two drops decreases, so that they spend
more time in close approach, and the collision efficiency increases; and third, as the
capillary number increases, greater deformation slows down the rate of film drainage
between the drops, and the collision efficiency for slightly deformable drops decreases.
Furthermore, the general nature of the two figures, demonstrating a sudden change
in slightly deformable drops between spherical drop behaviour and a zero asymptote
in collision efficiencies, is due to the nature of the transition between rim rupture
and nose rupture, as described above. The critical transition point is where multiple
coalescence zones end – as indicated by an infinite slope in the lower part of the
‘s’-shaped curves for βc vs. δ in figure 11. (For graphs of βc vs. Ca, the transition
point is where multiple coalescence zones begin, which would be given by an infinite
slope in a now backward-‘s’-shaped curve.) The presence of the second coalescence
zone has a relatively small effect on the collision efficiency for Ca� 1, and it is likely
that the neglected next terms in the thin-film equations for small deformations would
affect the accuracy of this small correction.

The inhibiting effect of small deformation on coalescence, as exhibited in figure 15,
is significant in the light of the work of Manga & Stone (1993, 1995). They found
that, for air bubbles rising in corn syrup, deformation (which is relatively large in
their case) actually promotes coalescence by causing alignment of the bubbles. Thus,
it is possible that there is a minimum in the collision efficiency as a function of the
capillary number. As explained in the Introduction, we expect that the increased
coalescence displayed by deforming air bubbles in corn syrup is at least partially due
to the small viscosity ratio.

Figure 16 shows the collision efficiencies for slightly deformable (solid curves) and
spherical (dashed curves) drops of ethyl salicylate (ES) in diethylene glycol (DEG).
The relevant physical parameters for this system (Barton & Subramanian 1989; Wang
& Davis 1993) are given in table 2. This liquid pair was chosen due to its previous
use in thermocapillary experiments (Barton & Subramanian 1989). To meet the
assumptions underlying the model, the Reynolds number Re2 of the larger drop and
the capillary number must both be much smaller than unity. Furthermore, in the
region where the transition between nose and rim rupture takes place, the Hamaker
parameter δ should remain small and not exceed O(Ca). In table 3, values of the
three dimensionless parameters are given for k = 0.5 at various values of the average
radius a = (a1 + a2)/2. In order for there to be an appreciable collision efficiency, the
Hamaker parameter δ should be greater than about 10−6; in this range of drop sizes
(a < 1500 µm), the creeping flow conditions are still met.

Figure 16 indicates similar behaviour to figures 14 and 15, showing an abrupt change
from spherical drop behaviour. Moreover, the collision efficiencies for spherical drops
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Figure 16. The collision efficiency for gravity-induced sedimentation of drops as a function of the
average drop radius for an ES/DEG system having µe = 0.35 g cm−1 s−1, µ̂ = 0.1, ρe = 1.1 g cm−3,
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a discontinuity in the first derivative, neglecting the presence of the second coalescence region.

µe (g cm−1 s−1) µ̂ ρe (g cm−3) ∆ρ (g cm−3) σ (dyn cm−1) A (erg)

0.35 0.1 1.1 0.013 1.9 5× 10−14

Table 2. Data for ES/DEG system at 20◦C.

a (µm) Re2 Ca δ

500 1.1× 10−2 7.2× 10−3 4.7× 10−3

700 3.0× 10−2 1.4× 10−2 3.2× 10−4

900 6.4× 10−2 2.3× 10−2 4.3× 10−5

1100 1.2× 10−1 3.5× 10−2 8.6× 10−6

1400 2.4× 10−1 5.6× 10−2 1.3× 10−6

1600 3.6× 10−1 7.3× 10−2 4.3× 10−7

1700 4.3× 10−1 8.3× 10−2 2.7× 10−7

Table 3. Dimensionless groups for ES/DEG system.

with van der Waals attraction are within 0.2% of the values for spherical drops in
the absence of attractive forces, again due to the magnitude of Q12 for the given drop
sizes (1010 < Q12 < 1012, see Appendix B). Thus, E12 for spherical ethyl salicylate
drops sedimenting in the presence of van der Waals forces through a medium of
diethylene glycol is nearly constant in the range where deformation is significant. As
shown in figure 16, at a given average drop radius there is a minimum in collision
efficiency versus size ratio.

The value of the average radius at which the collision efficiency for slightly de-
formable drops first becomes approximately equal to that for spherical drops can be
estimated by using equations (3.25)–(3.29), valid for β0 ≈ π/2. Usually at βc near
1.2 radians, the slope of βc vs. average radius becomes infinite, signalling the onset
of a second coalescence zone. Values of βc in this range are at the lower limit of

reliability for the β ≈ π/2-expansion. Thus, by using the value of ξ̂0 which corre-
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k Equations (3.25)–(3.29) Equations (3.13)–(3.17) % Rel. Error

0.2 0.0776 0.0770 0.78
0.5 0.0736 0.0729 1.10
0.7 0.0890 0.0879 1.25

Table 4. Average radius (cm) at which E/E0 ∼ 1 for ES/DEG system.

sponds to βc ∼ 1.2, a first approximation can be made to the average radius at which
the collision efficiencies for slightly deformable and spherical drops become nearly
equal. Table 4 shows calculations for the transition point for the ES/DEG system,
comparing the result from equations (3.13)–(3.17) to that from (3.25)–(3.29).

Table 3 and figure 16 can be used to estimate the range of radii for which this work
is important, extending previous results for spherical drops with attractive forces. For
smaller drops, molecular forces are large enough to pull the drops together before
dimpling occurs, and the results for spherical drops with van der Waals forces are
accurate. On the other hand, when the drop radius becomes too large, the Reynolds
number increases until inertial effects can no longer be ignored.

7. Concluding remarks
Relative trajectories for two different-sized drops in buoyancy-driven motion with

van der Waals forces have been calculated to determine the simultaneous effect of
small deformation and short-range van der Waals forces on collision efficiencies.
To satisfy the requirement that deformation be small until the drops are very close
together, the capillary number is much smaller than unity. To apply the Stokes
equations, the Reynolds number is also much smaller than unity. And, to keep
the interfaces of the drops fully tangentially mobile, the viscosity ratio between the
drops and surrounding medium is of order unity. In addition, the drop interfaces
are assumed surfactant-free, and the dimensionless Hamaker constant is kept much
smaller than unity to allow deformation to become important before coalescence.
The main simplifications allowing an asymptotic approach to the problem are that
the tangential motion of slightly deformed drops is essentially the same as that of
spherical drops in close approach and that the deformation is axisymmetric. In the
outer region, the spherical-drop solution is applicable and can be used to determine
the driving force for the inner region, in which a lubrication regime is established.

To provide an initial gap profile for the inner region, matching arguments were used
which take into account the small deviation from spherical shape that the drops would
acquire prior to near contact. Results for the inner region, computed by a numerically
stable semi-implicit finite difference scheme, demonstrate that the behaviour of the
minimum surface clearance as a function of time is no longer symmetric and contains
more than one minimum due to deformation. Moreover, in contrast to spherical
drops, there are two coalescence zones over a wide range of parameter space for
slightly deformable drops. This phenomenon is due to the transition from rim rupture
to nose rupture when the lubrication driving force is much smaller than unity – as
confirmed by an expansion of the driving force about the angle π/2 between the
gravity vector and the line of centres. As demonstrated for ethyl salicylate drops in
diethylene glycol, the collision efficiency of slightly deformable drops is approximately
the same for spherical drops until a particular value of the average radius at which the
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collision efficiencies for spherical and slightly deformed drops rapidly diverge. With
a further increase in the average radii, the collision efficiency for slightly deformed
drops quickly approaches zero, and the Reynolds number eventually increases beyond
the Stokes flow limit. Accordingly, the average drop radii to which this analysis is
applicable increases the range of drop sizes for which collision efficiencies are known,
within the constraint of creeping flow.

These results confirm qualitatively the loss of symmetry of relative trajectories due
to deformation observed in the experiments of Zhang et al. (1993). However, in order
to account for other experimentally observed phenomenon, such as non-axisymmetric
dimples mentioned in the concluding remarks of Yiantsios & Davis (1991), the
presence of surfactants, coupled with surface tension gradients and repulsive forces,
needs to be taken into account – both in asymptotic calculations and accompanying
boundary-integral simulations. Most directly, however, the present work can be
extended to finding collision efficiencies for slightly deformable drops in shear flow
– which will result in many more possible flow patterns and a more complicated
collision cross-section than the buoyancy-driven case considered here.

This work was supported by NSF Grant CTS-9416702, NASA Grant NAG3-1389,
and a NASA Graduate Student Researchers Program fellowship (to M.A.R.). We
are also grateful to E. J. Hinch for a discussion which has helped us to justify the
approximation of axial symmetry in §3.2.

Appendix A. Collision times for spherical drops without vdW forces
The collision times for spherical drops without van der Waals attraction, acting

under the influence of a constant driving force (3.23) and a linearly varying driving
force (3.31), are based on previous work (Davis et al. 1989; Zinchenko 1982) for the
motion of two spherical drops in close approach. The hydrodynamic lubrication force
F is given by

F = −6πµea1Λ11W, (A 1)

where W is the relative velocity of the two drops and Λ11 is given by the first term of
the asymptotic expansion (2.1) of Zinchenko (1982). Substituting dh0/dt for W and
the expression for Λ11 into (A 1) gives

F = − 3
8

√
2 π3µ′

(
a1a2

a1 + a2

)3/2
1

h
1/2
0

dh0

dt
. (A 2)

When F is constant and set equal to (3.2) with β = β0, and the variables are made
dimensionless according to (3.12), the differential equation (A 2) can be recast as (with
the tildes dropped from the dimensionless variables)

− 3
16

√
2 π2 dh0

h
1/2
0

= α cos β0 dt, (A 3)

where α is defined by (3.19). Integration from h0 at t = 0 to h0 = 0 at t = tcoll then
yields (3.23) for tcoll as a function of h0.

When F varies linearly with time as given by the right-hand side of (3.29), and the
variables are made dimensionless with (3.12) and (3.24), then (A 2) becomes

− 3
16

√
2 π2 dĥ0

ĥ
1/2
0

= (ξ̂0 − t̂)dt̂. (A 4)
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Subsequent integration of (A4) from ĥ0 at t̂ = 0 to ĥ0 = 0 at t̂ = t̂coll provides the result
(3.31), when the physically meaningful root is taken from the quadratic equation.

Appendix B. Collision efficiencies of spherical drops with vdW attraction
The procedure of Zhang & Davis (1991) was used to determine the collision

efficiencies for spherical drops with van der Waals forces for comparison with the
slightly deformable drop results. The trajectory equation for spherical drops with
interparticle forces is (Zhang & Davis 1991; Zinchenko & Davis 1994)

ds

dβ
= s

−
(
L(s) cos β +

G(s)

Q12

dφ12

ds

)
M(s) sin β

. (B 1)

Here, s, L, and M are the same as in (6.1)–(6.4). In addition, G is the relative
mobility function for spherical drop motion due to an equal and opposite force
along the line of centres (Haber et al. 1973); dφ12/ds is the dimensionless gradient
of the interparticle potential scaled with the Hamaker constant A, and Q12 is the
dimensionless interparticle force parameter:

Q12 = 2
3

πa1a2(a
2
2 − a2

1)∆ρg

A
. (B 2)

When Q12 is large, the effect of interparticle forces is small except for drops in very
close approach.

The dimensionless critical impact parameter was calculated by trial and error from
equation (B 1) to locate the trajectory where the van der Waals force balances the
gravitational force at β = π. Numerically, this scheme required systematically varying
the matching angle, βf , at a matching separation, sf , of 9.0, chosen so that molecular
forces are negligible, and integrating forward with the fourth-order Runge–Kutta
method. Once the limiting condition, βf , is specified, the collision efficiency, E12, is
found by

E12 = 1
4
y2
c =

1

4

[
sf sin βf exp

(∫ ∞
sf

L−M
sL

ds

)]2

. (B 3)

The value of the integral on the right-hand side of equation (B3) can be provided
analytically from the far-field expansions for L and M. The results for L, M, and G
were verified with figures 1 to 7 of Zhang & Davis (1991), while the values for E12

matched well with those from figure 19 of the same paper.
To compare results for slightly deformable drops with those for spherical drops

sedimenting in the presence of molecular forces, equivalence was established between
the dimensionless interparticle force parameter, Q12, and the dimensionless variables
used in the slightly deformable drop analysis. Some manipulation reveals that

Q12 =

(
2π

9

)3
(1− k)3(k + 1)11

k7

(
µ̂+ 1

µ̂+ 2
3

)2

1

Ca2 δ
. (B 4)

In table 5, some typical values of E12 are given for spherical drops with van der
Waals forces for k = 0.7 and µ̂ = 1 at various locations in dimensionless parameter
space for slightly deformable drops where deformation is important. Note that the
value of E12 at the given size and viscosity ratio is 0.1053 for spherical drops without
van der Waals forces. For typical values of δ and Ca where deformation is important,
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Ca δ Q12 E12

0.1 0.0004 1.376× 107 0.1090
0.1 0.00004 1.376× 108 0.1073
0.01 0.0004 1.376× 109 0.1062
0.01 0.00004 1.376× 1010 0.1058
0.001 0.0004 1.376× 1011 0.1054

Table 5. E12 with vdW at various Ca and δ.

Q12 is commonly of the order of 1010, and E12 for spherical drops with van der Waals
forces is within 0.5% of E12 for spherical drops without van der Waals forces. The
largest deviation in table 5 from E12 without attractive forces is 3.5%.
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